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VARIATIONAL MODEL OF ORGANIZED VORTICITY IN PLANE FLOW 

Yu. N. Grigor'ev and V. B. Levinskii UDC 532.5:532.6172.4 

In the research of the last decade [mostly experimental (see the review [i]) and numeri- 
cal (see the bibliography in [2])] a new phenomenon in turbulent flow has been widely studied: 
that of organized or coherent structures. The characteristic traits of coherent structures 
that are common in different flows have been formulated. In particular, the primary effect 
of nonviscous mechanisms on their formation and evolution have been noted. Hence, the ana- 
lytical models of coherent structures use exact and approximate solutions of the Euler equa- 
tions for the dynamics of an ideal fluid. However, this approach naturally forces various 
simplifications, and cannot completely take into account the existing information on coherent 
structures. For example, in models of shear layers [3-5], chains of coherent structures 
were considered with a uniform distribution of vorticity inside each of the individual struc- 
tures. In [3, 5] coherent structures were represented by Kirchhoff and Rankine vortices. 
In [6-8] the equations for the chains of coherent structures were closed using circular 
vortices from a single-parameter family [9]. 

In most of the models of shear layers, the interaction of an individual structure with 
other coherent structures is taken into account approximately. For example, in [3] the 
effect of the chain was replaced by a uniform deformation field. In [4, 5] vortices of 
a given shape were used, and in [6-8] the simplest approximation of point vortices was used. 

In the present paper an analytical model of coherent structures in plane flow is con- 
structed by using a variational principle borrowed from information theory. The field of 
vorticity in the coherent structure is found from the condition that the informational en- 
tropy functional be a maximum. In this approach one can use additional constraints to take 
into account different kinds of information on the basic properties of coherent structures 
in specific examples, such as dynamical invariants, symmetry properties of the structures, 
and characteristics of the average flow field. 

The variational principle is applied to the problem of a linear chain of coherent struc- 
tures in an infinite shear layer. The functional equation for the vorticity field in an 
individual coherent structure is given, in which the nonviscous interactions of the struc- 
tures are systematically taken into account. It is found that one of the analytical solutions 
of the equation can be represented in closed form. This is the single-parameter family 
of Stuart vortices [i0]. Using this solution, we construct a model of a chain of coherent 
structures for a time-dependent shear layer and our model reproduces the general features 
of its evolution. It is shown that for a certain choice of the family parameter one can 
obtain, with the help of the Stuart vortices, certain average characteristics of turbulent 
mixing layers which correspond to experimental data satisfactorily. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. 5, pp. 60-68, September-October, 1986. Original article submitted July i0, 1985. 
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i. Numerous examples of the successful application of the principle of maximum informa- 
tional entropy are known in various fields of physics (see the bibliography in [Ii, 12]). 
The principle allows one to construct objective estimates of physical fields which are con- 
sistent with the available information. Applied to the problem of the distribution of scalar 
vorticity S(R) (the z component of the vortex) in plane coherent structures and systems 
of plane coherent structures, the general method of applying the variational principle is 
explained in the following paragraphs. 

With no loss of generality we can assume that the unknown vorticity ~(R) is nonnegative 
and its total circulation is unity. We introduce the informational entropy functional 

S(Q) =--y dRQ(R)In~(R). (i.i) 

Additional information on the properties of coherent structures is represented as a set 
of functionals of S(R) which are in general nonlinear 

%(Q) = ~i, ~ = l . . . . .  N, ( 1 . 2 )  

w h e r e  t h e  > i  a r e  a s s u m e d  t o  be g i v e n .  I n  t h e  s e t  o f  f u n c t i o n a l s  ( 1 . 2 )  i t  i s  p o s s i b l e  t o  i n c l u d e  
different dynamical invariants of the field ~(R), its arbitrary moment characteristics, 
symmetry properties, features of the average flow, and other data. 

The problem of finding the vorticity ~(R) becomes a variational problem for the extremum 
of the functional 

N 

(e) = ~ (e) + ~ ~i% (-q), (i. 3) 
4=I 

where the hi are underdetermined Lagrange multipliers. From equating the variation of (1.3) 
to zero, certain functional equations follow, which together with the conditions (1.2) deter- 
mine the vorticity. 

In a certain sense this approach is similar to the method of [9, 13, 14], where equilib- 
rium statistical mechanics was applied to dynamical systems of point (small [14]) vortices 
in an ideal fluid and certain equilibrium vorticity distributions were studied. Following 
a suggestion :made in [6], these distributions began to be considered as possible vorticity 
fields in isolated coherent structures. 

A complete comparison of the two approaches undoubtedly deserves special study. There 
are some advantages of the variational principle considered here. For example, the results 
of [9, 13, 14] (see also [15], where the vorticity potential was considered), deduced by 
the methods of statistical mechanics, can be obtained more simply and naturally from the 
variational principle with a minimum amount of calculation. Manyof the steps necessary 
in constructing the statistical mechanics of the vorticity drop out of the problem: the 
transition to a dynamical system of point (discrete) vortices, the study of the first inte- 
grals of this system, the use of equilibrium chains for multivortex distribution functions 
[9] or the combinatorial derivation of the canonical distributions [13, 14], the transition 
to the single-vortex probability distribution density and its identification with the aver- 
age continuous vorticity field, etc. As noted above, the conditions (1.2) can be of any 
nature and can, for example, include experimental information; thus it is possible to suc- 
cessively refine the model. In the statistical mechanics approach the additional conditions 
can only be additive integrals of the corresponding dynamical system. Use of the principle 
of maximum entropy allows one to discard the probabilistic treatment of the field, which 
is essential in the statistical mechanics approach. Finally, a restriction to the framework 
of the hydrodynamics of an ideal fluid ceases to be necessary. 

2. The problem of the distribution of vorticity in a chain of coherent structures 
modeling an infinite shear layer if their nonviscous interactions are considered without 
additional simplifications [3-8] is an interesting problem of itself and can be used to 
demonstrate the possibilities of our method. 

The chain of structures can represent a plane vortex flow, periodic in the direction 
of flow with period d. Let y be the average circulation over a period. As a minimum system 
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of functionals (1.2) for this problem, it is convenient to choose the circulation F(~) = 
~d and the energy ~(~) of an individual coherent structure. For the transition to dimension- 
less variables we use the quantities d/2~, d/(4~2~), and (~d) 2 for characteristic scales 
of length, vorticity, and energy, respectively. The density of the fluid is assumed to 
be unity. 

The functional (1.3) is written in terms of dimensionless variables, as follows: 

�9 (~(r)) = S(~(r))  + ~ -  4g tE (~ ( r ) ) .  

Here o and I are undetermined Lagrange multipliers, and ~(r) is the vorticity in an individu- 
al structure with the normalization condition 

dr(o (r) = t .  ( 2 . 1 )  
G 

In general, the region of integration G is a certain curved strip with equidistant boundaries 

G ---- {r = (x, y), (9(/)) ~ x ~  q)(y) + ( 2 . 2 )  
-6.2~r, qD(O)= --u, --oo < y  < oo}, 

occupied by a single structure; 

s (r)) = - ] (r) In (r) 
O 

is the informational entropy functional of the vorticity ~(r): 

(2.3) 

E (co (r)) = + f  dr(o (r) ~p (r) ( 2 . 4 )  
G 

is the "excess" energy of an individual coherent structure (the kinetic energy of the fluid 
in the strip G minus a divergent contour integral [16]). For brevity we simply refer to 
the quantity (2.4) as the energy. 

The stream function ~(r) of the flow can be obtained by integrating the well-known 
expression [17] 

(x, y) = - -  (4~) -1 In + [ch y - -  cos x] ( 2 . 5 )  

for the stream function of a set of point vortices of identical circulation placed along 
the x axis with period 2~. The expression for ~(r) has the form 

%b (r) = - -  (4~)  -1  .f drlc~ (rl) in + [ch (Yl - -  Y2) - -  cos (x 1 - -  x~)]. ( 2 . 6 )  
G 

Taking the first variation of #(m(r)) and setting the result equal to zero gives 

dr&o {(~ - -  1 - -  In co (r) - -  4z~l~p (r)} ---- 0. 
G 

In view of the fact that 6~ is arbitrary, it follows that 

co(r) = c e x p ( - - 4 ~ J ( r ) ) , :  ( 2 . 7 )  

in which c is related in an obvious way with the Lagrange multiplier o. Substitution of 
(2.6) into the right-hand side of (2.7) leads to an equation for the vorticity of the coher- 
ent structure: 
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Equation (2.8), together with the normalization condition (2.1) and relation (2.4) (for 
a fixed value of E) form a system of equations for the vorticity ~(r) and the parameters 
c and t .  

3. The analysis establishes the following properties of the vorticity distribution 
satisfying (2.8), (2.4), and (2.1). It follows directly from (2.5) that inside the strip 
(2.2) ~(x, y) is a harmonic function everywhere except at the point x = y = 0, where there 
is a point vortex of unit intensity. Hence, 

A~(r) = --6(r) .  

Hence  a p p l y i n g  t h e  L a p l a c i a n  o p e r a t o r  t o  ( 2 . 6 ) ,  and u s i n g  ( 2 . 7 ) ,  i t  can  be shown t h a t  t h e  
stream function for the vorticity from (2.8) satisfies the Liouville equation [i0] 

A~ = --c  exp ( - - 4 a ~ )  ( 3 . 1 )  

on t h e  c l a s s  o f  2 v - p e r i o d i c  f u n c t i o n s  in  x .  I t  i s  known [16] t h a t  f o r  s t e a d y  p l a n e  f l o w  
t h e  s t r e a m  f u n c t i o n  s a t i s f i e s  t h e  n o n l i n e a r  P o i s s o n  e q u a t i o n  and ( 3 . 1 )  i s  a s p e c i a l  c a s e  
of this equation. This means that the vorticity distribution obtained from the variational 
principle is consistent with Euler's equations of inviscid hydrodynamics and determines 
a certain steady flow of an effectively nonviscous fluid. 

In particular, for the case of a straight strip F = {r = (x, y), -~ _< x <- 7, -~ < y < 
~} the family of periodic solutions of (3.1) introduced by Stuart [i0] are well known. The 
stream function and vorticity in this case have the form 

~(x, y, a) = - - ( 4 n ) - q n [ c h  y - -  a cos x]; ( 3 . 2 )  

~(x, y, a) = --(4~)-1(1 - -  ~2)[ch y - -  ~ cos x] -~, ( 3 . 3 )  

where 0 ~ a 5 1 is a parameter and a = 0 corresponds to a shear layer with the velocity 
profile u(y) = -(4~)-ithy, while the limit ~ + i represents a regular chain of point vor- 
tices distributed along the x axis with period 27. It can be verified directly that the 
vorticity (3.13) satisfies the normalization condition (2.1). Substitution of (3.2) and 
(3.3) into (2.7) shows that the Stuart solution can be obtained from the variational prin- 
ciple as the exact solution of (2.8) with 

C(~) = ( ~ ) - - 1 ( ~  - -  ~2) ,  ~ = ~ 2 .  (3.4) 

The asymptotic form of the stream function (2.6) is given by 

(x, y) y , ~  - -  (4~)-1 ! drc0 (r) In exp [ +  (y - -  Yl)] = - -  (4n)-11 u I. 

Hence it follows from (2.7) that in order for the total circulation of an individual coherent 
structure to be bounded it is necessary to require that I < 0. 

It is useful to introduce some expressions, which are usually calculated either with 
an information-theoretic approach [Ii], or with the use of statistical mechanics [9]. Sub- 
stituting (2.7) into (2.3), and taking into account (2.1) and (2.4), we find an expression 
for the maximum of the entropy functional 

Sm = - - ln  c + 8 ~ E .  ( 3 . 5 )  

As in  [9] we can  o b t a i n  an e x p l i c i t  e x p r e s s i o n  f o r  t h e  L a g r a n g e  m u l t i p l i e r  t i n  t h i s  
case. We differentiate the condition (2.1) with respect to E and substitute the expression 
for the vorticity from (2.7). Then we find 

I oc oX f o ,  ( 3 . 6 )  c.  oE 8~E ~ -- 4 ~  dr~ (r) ~-~ = 0. 
G 

where we have used the normalization (2.1) and the definition (2.4) for E. It is evident 
from (3.6) that in the derivation of such differential relations we must remember that all 
quantities determined by the vorticity distribution are interrelated. It follows from (2.4) 
and (2.6) that 
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f dra) (r) ~ = 1. 
O 

Using t h i s  and (3 .5 )  and ( 3 . 6 ) ,  we o b t a i n  t he  r e q u i r e d  e x p r e s s i o n  

= ( 4 n ) - 1  a s '  ~--f. (3.7) 

In analogy with a well-known thermodynamic relation (see also [9]), we note that the 
quantity ~-i determines the "temperature" (the modulus of the distribution) of the vorticity 
of an individual coherent structure considered as a subsystem. Because for our model ~ < 0, 
then, in contrast to [9], it follows from (3.7) that here the informational entropy functional 
falls off monotonically with increasing energy of the coherent structure. In other words, 
the informational measure of the coherence of the internal structure increases. 

Several useful relations can be obtained if the quantities in the functional depend 
on a set of parameters. In particular, for the a-family of Stuart we have from (3.5) and 
(3.7) that 

4~ OE (a) O In c ((z) 

Substitution of the values c(a) and I from (3.4) and integration leads to the expression 

E(a) = --(8g)-lln (i -- ~2) _~ E(0). 

The quantity E(0) can be evaluated relatively simply [18]: 

E(O)= --+(4~)-a f ~ drldr2ch-~-y~ch-2y2 x 
G G  

>< l n ( +  [C~!(,~1- ~2)- -COS(Xi--X2)]}  = - -  (8~[~)--1 (I  - 2 1 n 2 ) .  

Then 

E(a) = --(8n)-l{ln[(i--a2)/41 + l}. (3.8) 

We find the following expression for the informational entropy of the a-family from 
(3.4), (3.5), and (3.8) 

S,.(a) = ln[(i -- az)~/4] + 2. 

4. In analogy with [5-8], using the family of Stuart vortices, one can discuss a model 
of a chain of coherent structures which reproduces the pairing of vortices. We assume that 
after each act of pairing the steady-state distribution of vorticity in the coherent struc- 
ture is described by (3.3) for a certain value of a. The distance d between the centers 
of neighboring vortices is then doubled. From the nonviscous conservation laws of vorticity 
and energy it follows that the total circulation of each coherent structure F = 7d is also 
doubled, and its dimensionless energy E(~) increases. As seen from (3.8), E(~) is a mono- 
tonically increasing function of the parameter a which therefore also increases in the process 
of pairing. 

This model qualitatively reflects several observable physical effects [i]: the evolution 
by pairing of vortices, the primarily nonviscous nature of their interaction, the transport 
of energy into large-scale motion, the universality of the distribution of vorticity in 
coherent structures, and a definite symmetry, in which their mutual effect is taken into 
account. Because I = -2, it is evident from (3.7) that in the process of pairing the informa- 
tional entropy (2.3) decreases with an increase in the energy of the structures, i.e., the 
model contains the effect of increasing order (coherence) inside the individual vortices, 
which is also observed in experiment. It would seem that this property contradicts the 
principle of maximum informational entropy applied to the chain of coherent structures as 
a whole. The resolution of this apparent paradox is the dimensional nature of the effect 
(compare [19]). For the assumed system the entropy functional (i.i) in dimensional form 
can be written as 
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S(a) = Sin(a) + 2 In (d/2g). 
Using (3 .8)  and (3 .9 ) ,  t h i s  r e l a t i o n  can be r e w r i t t e n  in the  form 

S(a) = --8~E(a) + in [ed~/4~ ] (4 ,1)  

The conservation of energy for a given state of the chain is expressed by the relation 

E(a) = E 0. (4 .2)  

Here E0 is the energy of the fluid in the region G in the unperturbed flow, which is the 
initial state for the cascade of pairings. Usually it can be assumed that in the initial 
shear flow the distribution of vorticity depends only on the transverse coordinate: e(r) = 
(4~6)-i~(y/~), where 6 is the characteristic thickness of the layer. Then the normalization 
condition (2.1) transforms into the relation 

(26)-~ i dgo (Y/6)= 1,: 

and then one can write 

Eo = (4~)-qn 2 + 6E~,. 

E 8 = - - ( 8 ~ )  -z ~ S dzldz2o~(zl)o(z2)lzl--z~[ , 
- - o o  - - o o  

(4.3) 

where we have introduced the new variable z = y/~ and we have used the relation 

2 ~  

j" dx In [a ~ + b 2 -- 2ab cosx] 
0 

= 2nln (max(aL b2)). 

Using (4.2) and (4.3), it follows from (4.1) that 

--~- E8 + 21n (4.4) 

It is evident: from this relation that the dimensional entropy functional depends only on 
the distance d between the centers of neighboring structures, and this relation is satisfied 
after each pairing. The function S(~) has a unique minimum at the point d o = -16~2~E6 and 
monotonically increases for d > d 0. In terms of dimensionless variables, the equivalent 
inequality is 8~6E6 > -i. From the law of conservation of energy (4.2), it can be shown 
that this relation is necessarily satisfied if after the first pairing 0 < ~ < I. This 
means that the entropy functional (4.1) increases as the model chain evolves. 

In order to estimate the coefficient of alternation for our model we use its definition 
in the form 

= 2~/6~o, ~1  = ~-~ dxoJ (x, 0). (4.s) 

Using the normalization (2.1), it can be seen that (4.5) is constructed on a shear layer 
of effective thickness 6~ = AU/[Su/aY[max, averaged with respect to the longitudinal coordi- 
nate over the extent of a single structure. Substitution of (3.3) into (4.5) gives an ex- 
pression for the coefficient of alternation in terms of the parameter 

Z(~) = -  ~/(i -- ~2)I/2, (4.6) 

and the relation (4.2) can be used to express it in terms of the energy of the initial state 

%= a e x p [ + ( l  + 8a6Ea) ]. 
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In [6-8] the value of X was calculated for the self-modeling state of the chain, in 
which the original thickness of the shear layer is negligibly small in comparison with the 
distance between coherent structures; this corresponds to the limit 6 § 0. In this case, 
the last equation and (4.6) give the self-modeling value for the chain of Stuart vortices 

%a = ~ ~ ' ~ - - ~  5 , 2 ,  a a = (1 -- e - l )  1/2 ~-~ 0 , 8 .  

The value Xa lies on the upper boundary of the range of experimental values [i]. 

5. It is interesting to consider if the family of Stuart vortices can be used to model 
other turbulent characteristics of shear layers with coherent structures. If we neglect 
small-scale fluctuations, then using (3.2) the local instantaneous velocities along and 
transverse to the flow can be expressed by the equations 

1 
u(X, Y, t) = U + - f -  sh  y [ch  y - -  a cos Ut] -~ AU/2, 

v(x, y, t) = s in  U t [ c h  y - -  a cos Ut]-~AU/2, 
(5.1) 

where U = (U+ + U_)/2; AU = U+ - U_; U_+ are the asymptotic values of the velocity at the ex- 
ternal boundaries of the shear layer (mixing layer). Starting from (5.1) and with the help 
of an average over the time interval 0 <_ t _< T/U, we can obtain expressions for various 
characteristics of the turbulent flow containing the single free parameter ~. Its value 
can be chosen from the best approximation of the mean velocity profile and one can analyze 
how the model then reproduces the other turbulent quantities. For the above mean velocity 
profile we have from (5.1) 

<u> - -  U shy 
AU/2 '" [ch 2 Y - -  a] 1/2 " ( 5 . 2 )  

In Fig. 1 we show a comparison of the profile (5.2) (line) with the experimental data 
of [20] (points). For the choice ~ = 0.49 the mean relative deviation lies within 3% and 
the maximum deviation does not exceed 10%, i.e., the deviation is the same as for more compli- 
cated models of [20]. 

In Fig. 2 the curves 1 and 2 give the vorticity distribution obtained from (3.3): 

~(x ,  y, a ) /~ (O,  Oh a)  = ( i  - -  a)~/(ch y - -  a cos x) 2, a = 0,49 

f o r  x = 0 a n d  y = O, a n d  t h e  c o r r e s p o n d i n g  e x p e r i m e n t a l  v a l u e s  o f  [ 2 0 ]  a r e  d e n o t e d  b y  t h e  
circles and triangles. 

Although the deviation here is 50%, one can claim a satisfactory qualitative agreement. 

The value of the coefficient of alternation (4.6) is equal to X = 3.6 for a = 0.49, 
and this is sufficiently close to the value X = 3.2 measured in [20]. 

The averaging procedure gives the following results for the mean-square transverse 
and longitudinal fluctuations 

< v'2>l/z/AU = ~-~[chy/R - -  111/2, 

(u '2)/AU = (U2)Ish y I/R [ch y/R + shay -- (1 + a S) ] i / 2  

R - -  (ch2y - -  a~)1/2~ ~ = 0~49. 
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For ~ = 0.49, the transverse fluctuation profile qualitatively corresponds to the experimen- 
tal results of [20], although the discrepancy reaches 100%. For the longitudinal fluctuations 
an asymmetric profile with a maximum near the x axis is experimentally established. But 
from the equations given above it is evident that the model profile is symmetric with respect 
to the longitudinal axis and the fluctuations go to zero at y = 0. This contradiction is 
also obtained for the Reynolds stress profile and is due to the symmetry of the Stuart vor- 
tices with respect to both axes. 

We note that overall the model of coherent structures introduced here is more complete 
and systematic than previous models [3, 6-8]. There is the expectation that the numerical 
study of (2.8) will allow one to construct models of chains of coherent structures with 
other types of symmetry which will satisfactorily reproduce the fluctuation characteristics 
in shear layers;. 
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